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A long-term coherent total column ozone (TCO) record is essential to ozone layer variability assessment, espe-
cially thedetection of early signs of ozone recovery after years of depletion. Because of differences in satellite plat-
forms and instruments design, calibration, and retrieval algorithms, however, significant cross-mission biases are
observed between multiple sensor TCO observations in the common time–space domain. To attain a coherent
TCO record, observed cross-mission biases should be accurately addressed prior to the data-merging scheme.
In this study, a modified statistical bias correction method was proposed based on the quantile-quantile adjust-
ment to remove apparent cross-mission TCO biases between theOzoneMonitoring Instrument (OMI) andOzone
Mapping and Profiler Suite (OMPS). To evaluate the effectiveness of thismodified algorithm, the overall inconsis-
tency (OI), a unique time-series similarity measure, was proposed to quantify the improvements of consistency
(or similarity) between cross-mission TCO time series data before and after bias correction. Common observa-
tions during the overlapped time period of 2012–2015 were used to characterize the systematic bias between
OMPS and OMI through the modified bias correction method. TCO observations from OMI during 2004–2015
were then projected to the OMPS level by removing associated cross-mission biases. This modified bias correc-
tion scheme significantly improved the overall consistency, with an average improvement of 90% during the o-
verlapped time period at the global scale. In addition to the evaluation of consistency improvements before
and after bias correction, impacts of cross-mission biases on long-term trend estimations were also investigated.
Comparisons of derived trends from the merged TCO time series before and after bias correction across 38
ground-based stations indicate that cross-mission biases not only affect magnitudes of estimated trends, but
also result in different phases of trends. Further comparisons of estimated seasonal TCO trends before and after
bias correction at the global scale suggest that trends derived from the bias-corrected time series are more accu-
rate than thosewithout bias correction. Overall, the bias correction scheme developed in this study is essential for
preparing an accurate long-term TCO record representative of trend analysis to support future assessment of
ozone recovery at the global scale.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Ozone is an important atmospheric component that plays a key role
in atmospheric chemical and radiation processes, despite its smaller
concentration compared to the well-mixed carbon dioxide in the atmo-
sphere (Jöckel et al., 2006; McPeters, Bhartia, Haffner, Labow, & Flynn,
2013). Broadly, atmospheric ozone can be divided into two portions de-
pending on its location in the atmosphere: stratospheric ozone in the
Earth's upper atmosphere and tropospheric ozone in the lower atmo-
sphere. Unlike ozone in the troposphere, which adversely impacts
human health, natural vegetation growth, and crop yield, stratospheric
ozoneprotects life on Earth from the sun's harmful ultraviolet (UV) light
by absorbing the high frequency radiation through a photochemical
process. This process modifies the chemistry of the stratosphere and
produces heat that in turn changes atmospheric dynamics (McPeters
et al., 2013).

Compared to the “bad ozone” at the Earth's surface, “good ozone” in
the stratosphere drawsmore scientific attention because of the dramat-
ic ozone depletion over Antarctica and its profound climatic effects on
the global environment since the late 1970s. As a result of the abundant
release of anthropogenic chlorofluorocarbons into the atmosphere, an
expanding Antarctic ozone hole has been observed during each austral
spring in the past decades. Scientific investigations indicate that the
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depleted Antarctic ozone layer has played a critical role in the Southern
Hemisphere (SH) climate changes, and that these effects are not con-
fined just to the vicinity of Antarctica but extend over much of the SH,
even reaching the tropics (e.g., Reason, 2005; Son, Tandon, Polvani, &
Waugh, 2009; Thompson et al., 2011; Kang, Polvani, Fyfe, & Sigmond,
2011; Ding, Steig, Battisti, & Küttel, 2011; Feldstein, 2011; Fyfe, Gillett,
& Marshall, 2012; Gillett, Fyfe, & Parker, 2013; Gonzalez, Polvani,
Seager, & Correa, 2013; Manatsa, Morioka, Behera, Yamagata, &
Matarira, 2013). Owing to the implementation of theMontreal Protocol
and its amendments since 1989, emissions of ozone depleting sub-
stances into the atmosphere have been significantly reduced. Subse-
quently, ozone layer depletion has decelerated and has begun to
recover since themid-1990s (WMO, 2003).Modeling experiments indi-
cate that the ozone layer would recover to its 1980s conditions by the
2050s, which in turn may result in significant climatic changes (e.g.
Arblaster, Meehl, & Karoly, 2011; Perlwitz, 2011; Perlwitz, Pawson,
Fogt, Nielsen, & Neff, 2008; Barnes, Barnes, & Polvani, 2014; Previdi &
Polvani, 2014).

To better predict future climate, investigations of mechanisms
linking the regional climate changes to the observed ozone variability
are needed, and therefore accurate long-term total column ozone
(TCO) records are critical. These records are also essential to better un-
derstand earth system processes, to assess TCO variability and long-
term trends, and to provide inputs tomodeling efforts of Earth systems.
Since the late 1970s, satellite-based TCO observationswith high tempo-
ral resolution (e.g., daily) at the global scale have been available. Differ-
ent satellite instruments and platforms have provided TCO observations
since the 1970s (Fig. 1). These cross-mission sensors provide continu-
ous TCO observations for long-term variability assessment. Because of
differences in platforms and instruments design, calibration processes,
center wavelengths, and retrieval algorithms, however, apparent
cross-mission biases are observed between associated TCO observa-
tions. As reported by Kuttippurath et al. (2013), however, an ozone re-
covery rate of 1 to 2.6 Dobson Units (DU) per year was observed
during 2000–2010 over Antarctica, which in turn suggests that even
small drifts between TCO time series could result in apparent changes
Fig. 1. Satellite instruments and platforms providin
in ozone layer recovery speed. To create a consistent TCO record for
the assessment of the long-term ozone variability, particularly the
early signs of ozone recovery, cross-mission biases should be removed
prior to the merging scheme. Generally, an advanced approach is to re-
process all the original radiometric datasets by applying different cali-
bration corrections to each instrumental observation to guarantee that
data from different instruments are consistent prior to the retrieval pro-
cess through a same algorithm (McPeters et al., 2013). This approach is
accurate because radiance calibration errors propagate nonlinearly, pro-
ducing latitudinal and seasonal dependent errors in the retrieved ozone
data (McPeters et al., 2013). One representative product using this ap-
proach is the Version 8.6 Solar Backscatter Ultraviolet (SBUV) Merged
Ozone Data Set (MOD), which provides the longest available satellite-
based time series TCO profile from a single instrument type (i.e.,
SBUV-type) (Frith et al., 2014; McPeters et al., 2013). A similar product
was also created from European satellite sensor observations (e.g., Lerot
et al., 2014). Although this approach is accurate, establishing a consis-
tent calibration for different instruments requires efforts that can only
be achieved by working with the original instrument teams. Moreover,
the current Version 8.6 SBUV MOD is a zonal monthly mean gridded
product with a spatial resolution of 5° globally, and both spatial and
temporal resolutions are too coarse for regional analysis such as
ozone-hole monitoring. In addition to the aforementioned reprocessing
approach, data assimilation is another possiblemethod capable of creat-
ing a long-term TCO record by incorporating TCOobservations from sat-
ellite and ground-based instruments simultaneously. TCO records
generated from these methods are always referred to as multi-sensor
reanalysis ozone (e.g., Dragani, 2011; Van Der, J., Allaart, & Eskes,
2010, 2015).

In addition to the aforementioned complex approaches, statistical
bias correction methods could be alternatives to removing cross-mis-
sion sensors biases.Mostwidely used statistical bias correctionmethods
include simple approaches such as the delta-change and linear scaling
(e.g.Vila, de Goncalves, Toll, & Rozante, 2009; Teutschbein & Seibert,
2012), and higher-skill methods such as the nonlinear regression (e.g.
Teutschbein & Seibert, 2012; Bordoy & Burlando, 2013), Kalman
g total ozone measurements since the 1970s.

Image of Fig. 1


Table 1
Characteristics of TCO observations from OMPS and OMI used in this study.

Product Sensor Satellite Spatial resolution Temporal resolution Algorithm Time span Data provider

EDR_TO3_L3 OMPS S-NPP 1° Daily SBUV V8.6 2012.1–2015.3 OMPS science teama

OMTO3d OMI Aura 1° Daily TOMS V8.5 2004.10–2015.3 OMI science teamb

a NASA's Goddard Space Flight Center/OMPS science team. https://ozoneaq.gsfc.nasa.gov.
b NASA's Goddard Space Flight Center/OMI science team. http://disc.gsfc.nasa.gov/datacollection/OMTO3d_V003.html.
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filtering (e.g. DelleMonache, Nipen, Deng, Zhou, & Stull, 2006; Sicardi et
al., 2012), and distribution mapping (e.g., Li, Sheffield, & Wood, 2010;
Piani, Weedon, Best, Gomes, Viterbo et al., 2010; Piani, Haerter &
Coppola, 2010; Haerter, Hagemann, Moseley, & Piani, 2011;
Hagemann et al., 2011; Ahmed et al., 2013; Argüeso, Evans, & Fita,
2013; Bai, Chang, & Chen, 2016). These methods have been applied to
correct climate modeling biases to better predict future scenarios. Nev-
ertheless, some limitations associatedwith variousmethods persist. For
example, simple methods such as delta-change and linear scaling only
address the common biases between observations and modeling out-
puts,meaning thesemethods are incapable of handling nonlinear biases
with dependencies; however, results from nonlinear methods such as
aforementioned neural networks are prone to influence by the training
inputs. If the training inputs do not cover enough samples, the outputs
could be biased. Kalman filtering, widely used in removing modeling
biases in forecasting processes, cannot readily address biases in discrete
time series because these biases are always estimated fromprevious ob-
servations and forecasts in a cascaded way. In general, higher-skill bias
correction methods, such as distribution mapping, perform better than
simple methods due to their adaptive adjustment schemes and thus
can be widely adopted (Lafon, Dadson, Buys, & Prudhomme, 2013;
Teutschbein & Seibert, 2013).

Common observations between cross-mission sensors in the over-
lapped time period allow quantification of discrepancies between sen-
sors through inter-instruments comparisons (Barnes & Hu, 2015). The
most straightforward method is to build relationships with matchups
between cross-mission sensors observations through either linear or
nonlinear regressions. For instance, with stacked neural networks, tem-
poral and spatial drifts between TCO from three European satellite sen-
sors were characterized and used sequentially to adjust satellite
Fig. 2. Spatial distribution of 38 ground-based Dobson instruments providi
observations from different sensors to create a global homogeneous
long-term TCO record (Loyola & Coldewey-Egbers, 2012). In addition,
cross-mission biases can also be removed by calibrating satellite obser-
vations with collocated ground-based measurements. For example, to
improve the consistency of ocean color data derived from Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imag-
ing Spectroradiometer (MODIS), both sensors observations were
mapped onto the in situ measurements for bias correction and then
merged (Gregg &Casey, 2010), a process referred to as vicarious calibra-
tion. Similar bias correction schemes through vicarious calibration can
also be found in other studies (e.g., D'Alimonte, Zibordi, & Mélin,
2008; Hoyer, Le Borgne, & Eastwood, 2013); however, limitations of
these bias correction schemes are also obvious. First, if cross-mission
sensor biases are spatially heterogeneous, in situ observations alone
are not capable of removing all the cross-mission biases effectively on
an operational basis because abundant in situ measurements are lack-
ing. Second, addressing biases with latitudinal and seasonal dependent
features is difficult. Some of the higher-skill bias correction methods
could respond to these needs.

In this study, to demonstrate the necessity and the effectiveness of
the proposed algorithm, TCO observations from the Ozone Mapping
and Profiler Suite (OMPS) on board the Suomi National Polar-orbiting
Partnership (S-NPP) satellite and Ozone Monitoring Instrument (OMI)
on board the Aura satellite were applied. The reason for selecting TCO
data from OMPS and OMI is that their data are generally compatible
with each other in the common time-space domain and considered to
be synergistic over the observational period. Evenwith these two highly
accurate datasets, however, cross-mission biases are observed between
them, possibly resulting in inaccurate rate of ozone recovery estimation.
The objectives of this study were thus to: 1) develop a modified
ng TCO measurements used as ground-based references in this study.
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Fig. 3. Schematic plot of the original Q-Q adjustmentmethod for removing cross-mission TCObiases betweenOMPS andOMI.Note that the rawobservations (OMI observation: thick black
line) have a time scale (3 years: 2004–2007) the same as that (3 years: 2012–2015) of two control observations (common observations of OMI and OMPS: blue and red lines), meaning
that calibrating a length of 3 yearsOMI observations (i.e., 2004–2007) to OMPS level requires the same length of control observationsduring the overlapping timeperiod betweenOMI and
OMPS (i.e., 2012–2015). The projected OMPS denotes the anticipated data at the OMPS level that should be corrected from the OMI observations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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statistical bias correction method that can be applied to remove appar-
ent cross-mission TCO biases between OMPS and OMI; 2) cast a unique
Fig. 4.Distributionmapping for themodifiedmethod. Note that the raw observations (thick blac
two control observations (blue and red lines). (For interpretation of the references to color in
time series similarity measure, the overall inconsistency (OI), to evalu-
ate the performance of this modified statistical bias correction method
k line) have a time scale (8 years: 2004–2012) different from that (3 years: 2012–2015) of
this figure legend, the reader is referred to the web version of this article.)

Image of Fig. 4
Image of Fig. 3
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to address significant latitudinal and seasonal dependent biases and
quantify the consistency improvements before and after bias correction;
and 3) evaluate the impacts of cross-mission biases on trend analysis.
Two science questions were proposed for this study: 1) How can inher-
ent constraining and enhancing factors for datamerging of common ob-
servationwithin the overlapped time period be extracted and related to
actual changes in final data merging processes? 2) To what extent can
the cross-mission biases affect the accuracy of estimated TCO trends in
long-term assessment of ozone recovery at the global scale?
Fig. 5.Mean absolute bias (a) and associated standard deviation (b) of the relative bias betwee
TCO from OMPS minus those from OMI (abbreviated as OMPS-OMI in this context).
2. Satellite and ground-based TCO data

In this study, Level-3 TCO observations collected from OMPS and
OMI (characteristics in Table 1) were used collectively to generate a
merged long-term, consistent TCO record. Ground-based TCOmeasure-
ments collected from the World Ozone and Ultraviolet radiation Data
Centre (WOUDC)were also used as ground references to assess the con-
sistency improvement of the merged TCO record before and after bias
correction.
n OMPS and OMI TCO observations during 2012–2015. The relative bias was calculated as

Image of Fig. 5
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2.1. OMPS total ozone data

OMPS was launched on October 28, 2011, on board the S-NPP satel-
lite. The instrumental suite is the latest space-borne ozone mapping in-
strument specifically designed to measure the total column and the
vertical distribution of ozone on a daily basis for extending the nearly
40-year long-term global ozone records documented by previous back-
scatter UV sensors. OMPS is an advanced suite of three hyperspectral in-
struments that measure ozone by collecting sunlight in the UV and
visible (VIS) ranges backscattered from the Earth's atmosphere. The
sensor suite consists of a Total Column Nadir Mapper (TC-NM) that
maps TCOwith an approximate ground resolution of 50 km, aNadir Pro-
filer (NP) that measures ozone vertical profiles and a Limb Profiler (LP)
that measures vertical ozone distribution in the lower stratosphere and
troposphere with a vertical resolution of 1–3 km (Kramarova et al.,
2014).

The OMPS detectors are two-dimensional charge-coupled devices
(CCDs) and focal plane arrays, each arranged in one spectral and one
spatial dimension. The TC-NM sensor uses a single grating spectrometer
and a CCD array detector to measure backscattered radiance every
0.42 nm from 300 to 380 nm with 1.0 nm full width at half maximum
(FWHM) resolution. The sensor has a 110° cross-track field-of-view
(FOV) and a 0.27° along-track slit width corresponding to a 50 km res-
olution at nadir across a 2800 km swath. The 400 swaths per orbit
with 36 across-track measurements per swath allow the TC-NM sensor
to cover the entire globe daily (Flynn, Hornstein, & Hilsenrath, 2004).
The OMPS NP sensor employs a double monochromator and a CCD
array detector to make measurements every 0.42 nm from 250 to
310 nm with 1.1 nm FWHM resolution. The profiler has a 16.6° cross-
track FOV and a 0.26° along-track slit width, yielding a 250 km by
250 km cell size synchronized with 5 center cells of the TC-NM. The
OMPS LP sensor has a focal plane operating from 290 to 1000 nm for
high vertical resolution ozone profile observations. The LP sensor has
three vertical slits separated by 4.25° (across track) over the nominal
19 reporting-periods and makes about 160–180 measurements per
orbit with 14 orbits per day, allowing a full global coverage every 3–
4 days. Each slit has a 1.95° (112 km) vertical by 0.03° (2 km) horizontal
FOV equating to 0–60 km coverage (Kramarova et al., 2014).

TCO observations from OMPS TC-NM used in this study were gener-
ated byNASA's OMPS science teamwith the latest SBUVV8.6 algorithm,
a profile retrieval algorithm applied to SBUV type instruments, similar
to the V8 algorithm used at NOAA for producing their operational
Fig. 6. Daily zonal mean absolute TCO bias bet
ozoneproducts. TCO fromSBUV type instruments is derived by integrat-
ing the retrieved profile, rather than from a separate set of wavelengths,
as was applied in previous algorithms. Comparisons between V8.6 and
V8 algorithms were detailed in Bhartia et al. (2013). Major changes
are summarized as follows: 1) updates to instrument calibration pro-
cess; 2) incorporation of newozone absorption cross-sections in the for-
ward model; the Malicet et al. (1995) ozone absorption cross-sections
were applied in V8.6 instead of those from Bass and Paur (1985) used
in V8; and 3) inclusion of new ozone and cloud height climatologies;
in V8.6, a monthly latitudinal climatology of temperatures developed
from NOAA temperature datasets were used to minimize biases from
the variation of the ozone cross-section with the temperature. The
cloud pressure climatology was based on the optical centroid pressure
derived from rotational Raman scattering using OMI data.

Performance of OMPS TCO products was fully evaluated after a 3-
year operational period in the orbit. With the early 14-month V8.6
TCO products from OMPS, Bai, Liu, Shi, and Gao (2015) observed a
mean positive bias of ~1% in comparison with the collocated ground-
based TCO measurements from 34 Brewer and 39 Dobson spectropho-
tometers; no apparent bias was observed with time, latitude, solar ze-
nith angle (SZA), viewing geometry, or cloud fraction. By contrast, a
negative bias of 2–4% was observed from the NOAA operational V8
TCO products (Flynn et al., 2014). Other relevant works evaluating the
performance of OMPS can be found in the literature (e.g. Seftor et al.,
2014; Wu et al., 2014). Daily Level-3 gridded TCO product derived
from the V8.6 algorithm over the 2012–2015 period (Table 1) was ap-
plied in this study.

2.2. OMI TCO data

OMI is a nadir viewing and wide swath UV–visible hyperspectral
spectrometer on board the NASA EOS-Aura satellite launched on 15
July 2004 (Levelt et al., 2006). It measures reflected and backscattered
solar light from the Earth's atmosphere and surface in the wavelength
range from 270 to 370 nm (UV) and 350–500 nm (VIS) with a spectral
resolution of 0.45 nm in the UV and 0.63 nm in the VIS. The UV channel
is further divided into UV-1 and UV-2 sub-channels at about 310 nm.
The channel has a ground swath of 2600 km with each swath having
60 and 30 cross-track pixels for UV-2/VIS and UV-1 spectra. The ground
pixel size at nadir is 24 km (UV-2/VIS) and 48 km (UV-1) in the across-
track direction and 13 km in theflight direction. Themission of OMI is to
provide daily global TCO measurements to continue the TCO record
ween OMPS and OMI during 2012–2015.

Image of Fig. 6


Fig. 7. Comparison of monthly TCO between satellite observations and collocated ground-based measurements at the TSUKUBA station.
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established by the NASA Total Ozone Mapping Spectrometer (TOMS)
series of instruments since 1978.

In calculating the total ozone, OMI provides two different TCO prod-
ucts by applying OMI-TOMS and Differential Optical Absorption
Fig. 8. Comparison of daily percent difference between OMPS and OMI at the TSUKUBA statio
estimated cross-mission bias between OMPS and OMI.
Spectroscopy (OMI-DOAS) retrieval algorithms, respectively. The OMI-
TOMS TCO products are based on the long-standing TOMS V8 retrieval
algorithm (Bhartia & Wellemeyer, 2002). The TOMS algorithm uses
sun-normalized radiances at paired wavelengths (317.5 nm and
n before and after bias correction. (a) before bias correction, (b) after bias correction, (c)

Image of Fig. 8
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Fig. 10.Comparisons of probability density function (PDF) of TCOdifferences (OMPS-OMI)
between OMPS and OMI at the TSUKUBA station before and after bias correction.

Fig. 9. Comparisons of monthly mean relative differences between satellite and ground-based TCO observations at the TSUKUBA station before and after bias correction.
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331.2 nm under most conditions, and 331.2 nm and 360 nm for high
ozone and high SZA conditions, respectively) for ozone retrieval. The es-
sence is based on different absorption of ozone at two wavelengths be-
cause one is significantly absorbed by ozone whereas the other is
insensitive. The OMI-DOAS retrieval algorithm was specifically devel-
oped for OMI. With this algorithm, TCO is estimated in three steps
(Veefkind, De Haan, Brinksma, Kroon, & Levelt, 2006). First, the slant
column density of ozone is calculated with the actual DOAS-based
fitting of the measured spectrum in the spectral range of 331.2–
336 nm. This slant column density is the amount of ozone along an av-
erage photon path from the sun, through the atmosphere, to the satel-
lite. Second, the vertical column density of ozone is estimated by
dividing the slant column density with the air mass factor. Finally, the
initial estimates of vertical column are further corrected for cloud
contaminations.

Performance of TCO products derived from both algorithms have
been fully evaluated. By comparing with globally distributed ground-
based Brewer and Dobson spectrophotometers TCO measurements, an
averaged agreement of ~1% for OMI-TOMS and ~2% for OMI-DOAS
data were observed, respectively (Balis et al., 2007). As suggested, the
OMI-TOMS TCO products were observed to have high overall accuracy
with no significant dependence on latitude or SZA. The OMI-DOAS
data products were observed to have no significant dependence on lat-
itude except at the high latitudes in the SH, where the OMI-DOAS sys-
tematically overestimated the ground-based TCO measurements. By
comparison, a significant dependence on SZA was observed between
OMI-DOAS and ground-based TCOmeasurements.Moreover, a seasonal
dependent bias was observed and was further confirmed by Bak et al.
(2015), in which an average ~1.65% underestimation of OMI-TOMS
and OMI-DOAS compared with collocated Brewer measurements was
reported. Similar results can also be found in Antón et al. (2009), indi-
cating a ~2% underestimation by OMI-TOMS relative to 1.4% by OMI-
DOAS. A more significant seasonal dependent bias between OMI-
DOAS and Brewer measurements than that of OMI-TOMS necessitates
further bias correction.

In this study, the OMI-TOMS daily Level-3 gridded TCO product
(OMTO3d) was employed. This product, the ensemble of all Level-2
ground pixels with pixel centers having the same local calendar date
on the ground, was generated by the NASA OMI science team by
gridding only high quality Level-2 TCO orbital swath data on a 1 by 1°
grid asweighted average. During the gridding process, a variety of qual-
ity control criteria were established and implemented, such as the ex-
clusion of Level-2 observations with the solar eclipse possibility flag,
row anomaly flag, and others, to attain an accuracy-assured TCO estima-
tion. To illustrate the possible influence of cross-mission biases on the
long-term trend estimation, OMI-TOMS TCO observations during
2004–2015 were all applied.
2.3. Ground-based TCO data

To date, TCO measurements from the well-establishedWorld Mete-
orological Organization/Global Atmosphere Watch (WMO/GAW) net-
work routinely archived at the WOUDC have been widely used as
ground-based references (Balis et al., 2007). TCO measurements from
Brewer and Dobson spectrophotometers are commonly applied to vali-
date satellite TCO observations. Both Brewer and Dobson instruments
measure TCO in the atmosphere by observing spectral irradiance of
solar radiation at specific wavelengths, whichmainly rely on the theory
of differential absorption in theHuggins band in theUV spectrumwhere
ozone exhibits strong absorption features (Brewer, 1973; Dobson,
1968). The Dobson spectrophotometer is a large and manually con-
trolled two-beam instrument that measures TCO relying on the ratio
of the direct sunlight intensities at two standard wavelengths. Based
on the selected slits, the instrument compares spectral irradiances of
solar radiation at the three wavelength pairs A, C, D in the UV part of
the spectrum with strong and weak absorption by ozone (A:305.5/
325.4, C: 311.5/332.4, D: 317.5/339.9 nm). The most widely used com-
bination is the AD double-pair of 305.5 nm/325.4 nm and 317.6 nm/
339.8 nm. The Brewer spectrophotometer works similarly to the Dob-
son but is fully automated and has an improved optical design. TCO
values of the Brewer are determined by taking the ratio of sunlight

Image of Fig. 10
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intensities at four wavelengths (306–320 nm) with a resolution of
0.6 nm to overcome the spectral interference of sulfur dioxide with
ozone.

Accuracies of TCO recorded by Brewer and Dobson instruments are
well documented. Awell-maintained and calibratedDobson instrument
measures TCO with an estimated accuracy of 1% for direct sun observa-
tions and 2–3% for zenith sky or for SZA b75° (Basher, 1982). Similarly, a
well-calibrated Brewer instrument has an error level comparable to the
Dobson instrument, with an estimated accuracy of 1% through direct
sun observations (Antón et al., 2009). Despite the similarity in perfor-
mance between the Brewer and Dobson instruments, a small difference
within±0.6%was still observed due to the use of differentwavelengths
and varying temperature dependences for the ozone absorption coeffi-
cients (Van Roozendael et al., 1998). Daily TCO products recorded by 38
well-maintained Dobson spectrophotometers from theWOUDC archive
during 2004–2015were employed as ground truth in this study (Fig. 2).
Fig. 11.Monthly cascade TCO differences (OMPS-OMI) (a) before and (b) after bias correction a
TCO from OMPS and OMI over different months, and the diagonal elements thus represent TCO
TCO difference between OMPS and OMI during January whereas the second pixel in the same r
January.
To guarantee fair comparisons, only ground-based TCO measurements
under direct-sun and blue-sky observation mode were applied.

3. Methodology

3.1. Bias correction method

3.1.1. Quantile-quantile adjustment
As suggested by Teutschbein and Seibert (2013), higher-skill

methods such as distribution mapping perform better than simple
methods such as the delta-change and linear scaling in addressing
cross-platform biases. In this study, a modified bias correction method
was proposed based on one statistical bias correction method,
quantile-quantile (Q-Q) adjustment, originally developed to calibrate
the projected regional climate model (RCMs) outputs to the observed
local observations (Amengual, Homar, Romero, Alonso, & Ramis,
t the TSUKUBA station. Themonthly cascade TCO differences indicate differences between
differences over the same months. The pixel value at the lower left corner represents the

ow represent difference between TCO from OMPS during February and that of OMI during

Image of Fig. 11


Fig. 13. Zonal mean absolute bias between OMPS and bias-corrected OMI total ozone observations during 2012–2015.

Fig. 12. Mean absolute bias (a) and (b) standard deviation of relative bias between OMPS and bias-corrected OMI TCO observations during 2012–2015.
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2011). The original Q-Q adjustmentmethod relies on detecting changes
in the cumulative distribution functions (CDFs) between the recent past
observations and RCMs simulation outputs to characterize biases for
calibrating future projections, a process referred to as distributionmap-
ping. First, differences between CDFs of the recent past observed and
simulated outputs of climate scenarios are detected. The projected re-
gional climate models are then calibrated by removing the associated
difference (or bias) for each prediction. In this step, the associated bias
of a designated value in one projected time series is estimated based
on the relevant difference between the recent past observed and simu-
lated time series with the same percentile as shown in CDFs of the
projected one. After this type of Q-Q adjustment, the projected climate
scenarios are calibrated to the observed scenario standard because
model biases have been removed. This method has proved effective in
calibratingmodel projections of climate parameters, such as air temper-
ature (Gerelchuluun & Ahn, 2014) and precipitation (Osca, Romero, &
Alonso, 2013). Results from these studies indicate that the accuracy of
the calibrated outputs is significantly improved. An example depicting
the principles of Q-Q adjustment for bias correction is shown in Fig. 3.
Fig. 14. Comparisons of the overall inconsistency (OI) between OMPS and OMI total ozone obs
bias-corrected OMI.
Tomerge TCO observations fromOMPS andOMI toward a long-term co-
herent record, TCO observations fromone sensor should be calibrated to
another sensor's level by removing associated cross-mission biases be-
tween the two datasets. In the current study, TCO observations from
OMI were calibrated to the OMPS level. In this context, OMPS was
regarded as the baseline satellite sensor and OMI was viewed as the
complementary satellite sensor. Reasons for this selection are detailed
in Section 3.2.

As stated earlier, the original adjustment method requires all the
input time series to have the same number of samples (e.g., same time
scale: 3 years in Fig. 3) to guarantee accurate distribution mapping. In
other words, to calibrate one time series with 3 years of observations,
a length of 3 years common observations should also be guaranteed.
To calibrate OMI observations to OMPS level during 2004–2007, the
same number of control observations should be available as a reference
basis to support such calibration (i.e., 3 years of 2012–2015 in this
study) (Fig. 3). A TCO value, obsj, in one observed OMI time series
(black line in Fig. 3, defined as rawobservation; OMI observation denot-
ed as obsOMI hereafter) can be calibrated to the OMPS level (dashed line
ervations during 2012–2015. (a): OI between OMPS and OMI; (b) OI between OMPS and

Image of Fig. 14


Table 2
Linear trends estimated fromdifferent TCO records at 38 ground-based stations.WMO ID: identifying number inWMO ground-based station network. Latitude: north positive. Longitude:
east positive. N: number ofmonths. OMI: untreatedmonthly TCO time series fromOMI observations during 2004–2015. OMI+OMPS:mergedmonthly TCO time series between untreat-
ed OMI (2004–2012) and OMPS (2012–2015). PRJ_OMPS+ OMPS: merged monthly TCO time series between bias-corrected OMI (i.e., PRJ_OMPS, 2004–2012) and OMPS (2012–2015).
Ground-based: monthly TCO time series from ground-based measurements coincident with that of satellite observations.

WMO ID Latitude Longitude N OMI
DU/month

OMI + OMPS
DU/month

PRJ_OMPS + OMPS
DU/month

Ground-based
DU/month

2 22.8 5.5 120 0.035 0.089 0.037 0.068
12 43.1 141.3 122 −0.085 0.005 −0.081 −0.094
14 36.1 140.1 122 0.023 0.097 0.023 −0.032
19 46.77 −100.75 113 0.170 0.240 0.177 0.199
27 −27.42 153.12 109 0.048 0.077 0.054 0.032
29 −54.5 158.97 108 0.077 0.096 0.077 −0.008
40 43.93 5.7 102 0.154 0.235 0.166 0.054
43 60.1 −1.2 103 0.133 0.208 0.149 0.113
51 64.1 −21.9 91 0.213 0.321 0.226 0.244
67 40.03 −105.25 117 0.081 0.128 0.082 0.077
68 51.84 20.79 111 −0.035 0.025 −0.032 −0.054
84 −12.42 130.88 109 0.043 0.073 0.049 0.032
91 −34.58 −58.48 110 0.046 0.076 0.050 −0.003
96 50.2 15.8 116 0.027 0.089 0.032 0.031
99 47.8 11 122 0.002 0.055 0.003 −0.014
101 −69 39.6 92 0.257 0.278 0.247 0.206
105 64.82 −147.87 78 −0.058 0.063 −0.044 0.183
106 36.25 −86.57 114 0.073 0.135 0.076 −0.001
107 37.93 −75.48 106 0.070 0.152 0.073 −0.110
111 −89.98 −24.8 52 0.627 0.606 0.651 0.690
152 30.1 31.3 105 0.051 0.125 0.055 0.076
159 −31.92 115.95 98 −0.018 0.014 −0.017 −0.066
190 26.2 127.7 120 0.032 0.084 0.032 0.033
191 −14.25 −170.56 83 0.126 0.163 0.129 0.064
199 71.32 −156.6 57 0.066 0.234 0.075 0.239
208 40 116.4 119 −0.049 0.030 −0.047 −0.132
209 25.03 102.68 83 0.057 0.140 0.058 0.077
214 1.33 103.88 70 0.001 0.021 0.000 0.087
216 13.67 100.61 119 0.033 0.081 0.036 0.034
219 −5.84 −35.21 24 0.439 0.439 0.477 −0.053
233 −64.23 −56.62 79 0.192 0.228 0.188 0.232
245 23.97 32.78 118 0.035 0.094 0.037 0.105
256 −45.03 169.68 104 0.014 0.043 0.011 −0.039
265 −25.91 28.21 95 0.122 0.141 0.127 0.137
268 −77.83 166.67 69 0.306 0.344 0.309 0.310
284 64.2 19.8 79 −0.269 −0.162 −0.266 −0.186
293 38 23.7 120 −0.034 0.033 −0.030 −0.058
339 −54.85 −68.28 109 0.064 0.087 0.069 0.097
Average 0.081 0.136 0.086 0.068

Fig. 15. Comparisons between observed and reconstructed TCO at the TSUKUBA station. (a) comparisons of TCO between observations from OMPS (green) and the reconstructed one
(red); (b) same as in (a) but for OMI; (c) comparisons of TCO differences between observations (i.e., OMPS-OMI) and that of a reconstructed one (i.e., Rec. OMPS – Rec. OMI); (d)
comparisons of TCO differences between estimated biases from proposed bias correction algorithm (i.e., Corrected Bias) and that of reconstructed TCO differences. (Readers may refer
to the web version of this diagram for the color representation of the two time series plots in this diagram.)
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in Fig. 3, defined as projected OMPS time series; denoted as prjj) by re-
moving the associated bias. This process is modeled as:

pr j j ¼ obs j þ ΔTCOj ð1Þ

where prjj denotes the projected TCO value at the OMPS level; obsj is the
jth value in the raw observation time series; and ΔTCOj is the relevant
bias between OMPS and OMI at the given obsj.

Following the principles of Q-Q adjustment,ΔTCOj can be estimated
through distribution mapping between common TCO observations of
OMPS and OMI during the overlapped time period of 2012–2015.
Here, these common observations are defined as two control observa-
tions, which can be denoted as COMPS and COMI, respectively. The collec-
tive calibration processes are formulated as:

ΔTCOj ¼ gΔþ fΔ0
i ð2Þ

where

i ¼ p1j obsOMI≅obs j ð3Þ

Δi ¼ Ci
OMPS−Ci

OMI ð4Þ

Δ ¼ 1
N

X
Δi ¼ COMPS−COMI ð5Þ

Δ0
i ¼ Δi−Δ ð6Þ
Fig. 16. a.Panel a is comprised of four subdiagrams on the top of this diagram. Seasonal TCO tre
(MAM), (b): summer (JJA), (c): fall (SON), (d): winter (DJF). Trends are represented by slope o
lines depict regionswhere trends are significant at the 90% confidence interval.White area indic
of four subdiagrams at the bottom of this diagram. Same as Fig. 16a (Panel a) but trends deriv
g ¼ obsOMI

COMI
ð7Þ

f ¼ IQRobsOMI

IQRCOMI

ð8Þ

IQRobsOMI
¼ obsOMI jp¼75%−obsOMI jp¼25% ð9Þ

IQRCOMI ¼ COMI jp¼75%−COMIjp¼25% ð10Þ

In Eqs. 2–6, p1 denotes the associated CDFs of obsOMI (i.e., rawobser-
vations of OMI); i is the associated percentile of obsj in p1; N is the num-
ber of samples in the raw observation time series;COMPS andCOMI denote
themean value of COMPS and COMI, respectively; g and f are twomodula-
tion parameters; and IQRobsOMI

and IQRCOMI
are the interquantile range of

raw and control TCO observations from OMI at 75% and 25% percentile.
As shown in Eqs. 2–10, estimated biases are highly dependent on the

CDFs of raw observation and two control TCO observations, meaning
that the raw observation and two control time series should have the
same number of samples. For instance, to calibrate an observed 10-
year TCO time series fromOMI, two 10-year overlapped TCO time series
from OMPS and OMI must be prepared as control observations to guar-
antee accurate distribution mapping. Otherwise, biases might not be
fully addressed, especially for those biases with dependence effects.
This constraint limits the application of the original method to other
cases, especially for removing cross-mission biases between satellite
nds derived from the merged OMI and OMPS observations during 2004–2015. (a): spring
f the fitted straight line to eachmerged TCO time series (i.e., linear fitting). Green contour
ates no trend estimation due to the lack of reliable TCOobservations. b. Panel b is comprised
ed from the merged TCO time series between bias-corrected OMI and OMPS.
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observations, due to difficulties in attaining lengthy overlapped control
observations.

3.1.2. Modified bias correction method
To address this temporal constraint in cross-mission data merging

and improve applicability of the original method for cross-mission
bias correction, some essential modifications are necessary to optimize
the bias estimation process. The entire modified process to estimate
cross-mission biases between OMI and OMPS (Fig. 4) can be summa-
rized as follows:

1) Stage 1: Control observations of OMPS and OMI are generated from
their common observations during the overlapped time period. To
handle seasonal dependent cross-mission biases, control observa-
tions should have adequate samples that cover at least a full period
cycle (e.g., one year for TCO). Generally, more accurate relationships
can be characterized to estimate cross-mission biases with the
higher number of samples in control observations. Therefore, in
this study, all common observations of OMPS and OMI during
2012–2015 were used to generate the two relevant control
observations.

2) Stage 2: Regardless of the number of samples included, any observed
OMI TCO time series (i.e., raw observation) can be projected to the
OMPS level by removing associated bias for each sample. For exam-
ple, the ΔTCOj for obsj in the raw observation time series of OMI can
be estimated from:

ΔTCOj ¼ g0Δþ f 0Δ0
ii ð11Þ
Fig. 16 (con
where

ii ¼ p2j COMI≅obs j ð12Þ

Δii ¼ Cii
OMPS−Cii

OMI ð13Þ

Δ ¼ COMPS−COMI ð14Þ

Δ0
ii ¼ Δii−Δ ð15Þ

g0 ¼ COMPS

COMI

ð16Þ

f 0 ¼ IQRCOMPS

IQRCOMI

ð17Þ

IQRCOMPS ¼ COMPSjp¼75%−COMPSjp¼25% ð18Þ

where p2 denotes the associated CDFs of COMI (i.e., control observations
of OMI); ii is the ith percentile in p2 and is estimated by finding the data
value COMI equal (or close) to the given observation obsj;COMPS andCOMI

denote the median value of the two control observations; g′ and f′ are
twomodulation parameters that adjust the distribution of the projected
time series; and IQRCOMPS

is the inter-quantile range of control TCO obser-
vations from OMPS at 75% and 25%.

The essence of this modified bias correction method is to estimate
cross-mission bias individually for each sample in the raw observation
time series, regardless of other samples and the distribution of the
raw observation time series. Processes in Eqs. 11–18 can be interpreted
tinued).

Image of Fig. 16
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as: given any observed OMI TCO value (i.e., obsj), the cross-mission bias
toward this observation is only determined by the TCO value itself
and distributions of two control observations. First, the associated
percentile toward the given obsj in the OMI control observation
time series was estimated by finding the onewith the same or closest
data value to obsj (Eq. 12). Once the percentile was determined, the
relative data value with the same percentile in the OMPS control ob-
servation time series could also be obtained (i.e., COMPS

ii ). Second, the
raw bias Δj for the given obsj can be estimated from Eq. 13. Finally,
cross-mission bias toward the given obsj (i.e., ΔTCOj) can be calculat-
ed through Eq. 11 because all other modulation parameters can be
easily obtained from two control observation time series, unrelated
to the given obsj.

As indicated in Eqs. 11–18, the difference between themodified bias
correctionmethod and the original Q-Q adjustment lies in rationales for
estimating biases. In the modified method, the median instead of the
mean value was used to avoid error propagations due to possible large
observation uncertainties. In addition, distribution mapping was only
implemented between the two control observations (i.e., COMPS and
COMI) without referring to the distribution of the raw observations
(i.e., obs). Similarly, the two modulation parameters (g′ and f′) were
also estimated only from two control observations. Within this context,
the modified bias correction method may be more adaptive than the
original one in bias characterization because it is independent from
the probability distribution of the raw observations. This advancement
enables the modified bias correction method to handle observations at
different time scales and thus can be directly used to remove cross-mis-
sion biases between satellite observations.
Fig. 17. Differences of seasonal TCO trends before (Fig. 16a) and after (Fig. 16b) bias co
3.2. Statistical bias correction scheme

By using the modified statistical bias correction method over each
geographic grid (i.e., each pixel of remote sensing images), a long-
term coherent TCO record can be created fromOMI and OMPS observa-
tions at the global scale. Based on common observations between OMI
andOMPSduring the2012–2015 overlapped timeperiod, cross-mission
biases were estimated and removed at each OMI geographic grid indi-
vidually. As noted, OMPS was selected as the baseline satellite sensor
for the creation of a long-term TCO record during the overlapped time
period, despite OMI continuously providing TCO observations in the
orbit during the same time period. The primary reason for this option
is that OMPS will work in the orbit for the next 10 years whereas OMI
will finish its mission in the upcoming years. Therefore, TCO observa-
tions from OMPS rather than those from OMI should be used as the
baseline information to form the long-term record. With this merging
scheme, the merged long-term TCO record can be updated simulta-
neously by directly incorporating the latest OMPS TCO observations
without further bias correction in future. In this study, a long-term co-
herent TCO record was created bymerging bias-corrected TCO observa-
tions fromOMI during 2004–2012with those fromOMPS during 2012–
2015.

As cross-mission TCO biases might have seasonal effects (e.g., Bak et
al., 2015), monthly time series instead of observations through all sea-
sons were used as control in the operational bias correction processes.
This process means that, for example, to correct one OMI TCO value ob-
served in January 2010 over one geographic grid, control observations
for the estimation of associated cross-mission bias at this grid were
rrection. (a): spring (MAM), (b): summer (JJA), (c): fall (SON), (d): winter (DJF).
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created onlywith TCO values observed in January from the common ob-
servations during the overlapped time period.

3.3. Overall inconsistency index

Adequate statistic indicators should be applied to evaluate the per-
formance of the proposed bias correction method. In addition to the
commonly applied mean relative difference (MRD) and root mean
squared error (RMSE), one index termed as overall inconsistency (OI)
was proposed based on the Mahalanobis distance (DMah) to check the
consistency (or similarity) between two time series. The DMah is one
time series similaritymeasure that not only quantifies the difference be-
tween time series but also accounts for non-stationary of variance and
temporal cross-correlation (Lhermitte, Verbesselt, Verstraeten, &
Coppin, 2011; Mahalanobis, 1936). Because of the mathematical limita-
tions (root squared), however, the DMah is incapable of reflecting the ef-
fect of overestimation and underestimation between time series and is
prone to emphasize the mean squared root rather than the relative dif-
ference. To obtain a more comprehensive similarity between two time
series, an improved time series similarity measure was proposed in
this study by incorporating the MRD and mean absolute relative differ-
ence (MARD). Compared to the DMah, the OI not only emphasizes the
overall difference between two time series but also indicates the overes-
timation (underestimation) through the positive (negative) sign of the
calculated weights. These statistics were formulated as:

MRD ¼ 100� 1
N

XN
i¼1

SATi−GBi

GBi
ð19Þ

MARD ¼ 100� 1
N

XN
i¼1

SATi−GBi

GBi

����
���� ð20Þ

RMSE ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

SATi−GBi

GBi

� �2
vuut ð21Þ

DMah ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0Σ−1ϵ

q
ð22Þ

OI ¼ MRD � RMSE
MARD

� DMah
2

N
ð23Þ

where SAT and GB denotes TCO observations from satellite and ground-
based instruments, respectively; ϵ is the error time series (i.e., SAT-GB);
ϵ′ stands for the transpose of the column vector ϵ; Σ is the error covari-
ancematrix; andN is the number of samples in ϵ. As suggested in Eq. 23,
the range of OI is between −∞ and +∞, with a perfect value of zero. A
value of OI less than zero indicates underestimation, whereas a positive
value implies overestimation.

4. Results

4.1. Bias correction

Apparent cross-mission biases were observed between overlapped
OMPS and OMI TCO observations over the 2012–2015 period at the
global scale (Figs. 5 and 6). The MARD (Fig. 5) indicates significant lati-
tudinal dependent biases whereas the daily zonal mean (Fig. 6) shows
apparent seasonal dependent biases. Large deviations were mainly ob-
served at the mid-to-high latitudes in the Northern Hemisphere (NH),
with most significant differences observed over the Arctic regions. In
the time domain, larger deviations mainly occur during the boreal
spring (i.e., March–April–May) in the NH, in which large TCO values
were observed. Meanwhile, apparent biases were observed at the
times close to the polar nights in the SH. This effect might be related
to the low signal-to-noise ratio during those time periods due to the
viewing limitations (i.e., large SZA), and hence large uncertainties
could be introduced into the derived total ozone products (Bai, Liu et
al., 2015). Large uncertainties can also be deduced from large standard
deviations of biases over those regions, however. In general, the cross-
mission TCO biases between OMPS and OMI are spatiotemporal hetero-
geneous with nonlinear and non-stationary variability.

As described earlier, the modified bias correction method was ap-
plied to remove those observed complex cross-mission biases between
OMPS and OMI TCO observations. Taking TCO observations recorded
over the geographic grid where the TSUKUBA station (36.1°N/140.1°E)
is located for example (Fig. 7), OMI slightly underestimated the TCO
values whereas OMPS overestimated these TCO values relative to the
collocated ground-based TCOmeasurements. Thus, differences between
OMPS and OMI were much larger than those found by comparing them
with the ground-based measurements individually. A mean positive
bias N2% was observed between OMPS and OMI (Fig. 8a), from which
apparent seasonal dependence can be observed as well. By applying
the modified bias correction method, cross-mission biases were re-
moved significantly between OMPS and OMI, with the remnant biases
around zero (i.e., a mean bias around ~0.1%) (Fig. 8b). The estimated
cross-mission biases through the modified bias correction method
show significant seasonal effects (Fig. 8c). This chaotic bias time series
suggests that themodified bias correctionmethod is capable of address-
ing observednonlinear and non-stationary timedependent biases.With
this modified method, rather than removing a simple mean difference
(e.g., delta-change) or a linear fitted value (e.g., linear transformation)
from the raw observations, cross-mission biases were removed
adaptively.

Performance of the proposed bias correction method was evaluated
through different comparisons (Figs. 9–11). Vicarious comparisons of
monthly MRD (Fig. 9) indicated fair agreements between OMPS and
bias-corrected OMI TCO observations. Before bias correction, OMI
underestimated ground-based TCO measurements by ~1% whereas
OMPS overestimated by ~3% at the TSUKUBA station. Thus, distinct
cross-mission biases were observed between OMPS and OMI at this
geographic grid. Nevertheless, biases were reduced to a level of 0.1%
after bias correction. In addition, the probability density functions
(PDFs) of TCO differences between OMPS and OMI before and after
bias correction were also compared (Fig. 10). As indicated, a mean pos-
itive bias of 7.6 DUwas observed before bias correction, whereas it was
reduced to 0.2 DU after correction. The standard deviation of biases was
reduced as well after bias correction, reflecting the adaptive nature of
the modified bias correction method.

To depict significant cross-mission biases between OMPS and OMI
before bias correction and the performance of bias correction method,
the monthly cascade differences were calculated as well (Fig. 11). Be-
cause TCO presents a sinusoid variability throughout the year due to
seasonal variations, the monthly cascade differences should be positive
and negative every three months. Nevertheless, it indicates significant
cross-mission biases between OMPS and OMI before bias correction,
from which seasonal behavior is barely detected (i.e., biases not
shown with positive and negative alternatively in Fig. 11a). After bias
correction, cross-mission biaseswere significantly reduced, represented
by apparent seasonal variability of TCOdifferences (Fig. 11b). Compared
to the original time series before bias correction, the projected OMI data
are more consistent with OMPS, deduced not only from the TCO differ-
ences in the same month (i.e., diagonal values) but also from the more
significant seasonal effects (i.e., positive and negative values alterna-
tively) of the monthly TCO differences after bias correction (Fig. 11b).

Comparisons of TCO observations betweenOMPS and bias-corrected
OMI (Figs. 12 and 13) are in the form ofmean absolute bias at the global
scale. This comparison shows that the apparent latitudinal and seasonal
dependent cross-mission biases were significantly reduced, especially
for the location at the mid-to-high latitudes in the NH during the boreal
spring, where large cross-mission biases were observed before bias cor-
rection. Compared to the raw TCO time series, bias-corrected OMI was
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more consistent with OMPS at the global scale, with a mean TCO differ-
ence b5DUglobally, except for regions over the 60°N–90°Ndue to large
SZAs (Fig. 13). Despite some large standard deviations persisting after
bias correction (Fig. 12b), they have been significantly reduced (Fig.
12b) compared to those before bias correction (Fig. 5b). Those remnant
large standard deviations and biases indicate that large uncertainties
could be introduced into the TCO retrieval process due to limited view-
ing conditions; however, removing those random biases with limited
control observations is still difficult.

In addition to the mean absolute bias, the OI was also calculated to
evaluate the consistency between OMPS and OMI TCO observations.
OMPS has large values relative to OMI observations globally, with signif-
icant inconsistency (OI N 5) observed in the NH, especially over the Arc-
tic and tropic regions (Fig. 14a). It is indicative that large biases were
presentmainly at themid-to-high latitudes in the NH and the Arctic re-
gions (Figs. 5 and 6); thus, large OI values over these regions could be
primarily attributed to the associated large cross-mission biases be-
tween OMPS and OMI at these locations. Nevertheless, significant in-
consistencies were also observed in the tropic regions where small
cross-mission TCO biases were observed. After comparing TCO observa-
tions between OMPS and OMI over the tropics, it can be found that the
cross-mission biases between them were small in magnitude but with
poor correlations. This effect demonstrates the advantage of OI com-
pared to other simple parameters such as the MRD and RMSE, which
only reflects deviations between time series without considering vari-
ance and correlation. Therefore, OI is more comprehensive and reliable
for the evaluation of time series similarity as variances and correlations
must also be considered. After bias correction, the apparent inconsisten-
cy was significantly removed, with an improvement of overall consis-
tency by ~90% at the global scale (calculated from

100�
1
N∑

N
i¼1jOIbeforei j−1

N∑
N
i¼1jOIafteri j

1
N∑

N
i¼1jOIbeforei j

). As indicated therein, an OI within

±1 was observed over each geographic grid globally (Fig. 14b). Com-
pared to the bias-corrected OMI TCO observations, the OMPS showed
a slight overestimation in the NH and a negligible underestimation in
the SH. Overall, themodified bias correctionmethod worked well in re-
moving those observed latitudinal and seasonal dependent biases be-
tween OMPS and OMI TCO observations.

To gain further insight into the estimated cross-mission TCO biases,
raw OMPS and OMI TCO observations were reconstructed based on
the time-dependent variability from two satellite time series observa-
tions during the overlapped time period. Time variable was defined as
sin(2π*DOY/365), where the day-of-year (DOY) represents the obser-
vation date. First, CDFs of pair-wised satellite TCO observations and the
associated time variables during the overlapped time periodwere calcu-
lated. TCO of OMPS andOMIwere then reconstructed individually based
on the time variable through the same concept of distribution mapping
(Fig. 15). The reconstructed TCO time series clearly exhibited seasonal
variability (Fig. 15a–b). Unlike the raw time series with large fluctua-
tions, the reconstructed time series varied smoothly along the time ho-
rizon. Biases between these two reconstructed TCO time serieswere also
compared with the original biases (i.e., OMPS-OMI in Fig. 15c) and the
biases estimated from the proposed modified bias correction method
(i.e., corrected bias in Fig. 15d), respectively. Results indicate that the
cross-mission biases between OMPS and OMI were mainly dominated
by the seasonal dependent biases, and the modified bias correction
method not only removed the apparent seasonal dependent biases but
also addressed some other randombiases. Possible reasons for these ob-
served cross-mission TCObiases have been investigated in the literature,
such as in McPeters et al. (2013) and Frith et al. (2014).

4.2. Impacts of cross-mission biases on trend analysis

Cross-mission biases not only caused apparent inconsistencies be-
tween TCO observations from OMI and OMPS in the time horizon but
also produced large uncertainties in long-term trend estimations,
which in turn could result in an earlier expectation of ozone layer recov-
ery at the global scale. To evaluate the possible impacts of cross-mission
biases on trend analysis, linear trends estimated from the merged TCO
time series before and after bias correction, represented by the slope
of the fitted straight line to each time series, were compared. Monthly
trends derived from the merged TCO record between OMI and OMPS
at 38 ground-based stations were compared (Table 2). As references,
trends derived from the untreatedmonthly OMI TCO time series and co-
incident ground-based TCOmeasurements during 2004–2015were cal-
culated. Results indicated that trends derived the merged TCO time
series without bias correction (i.e., OMI+OMPS) significantly overesti-
mate those from other three datasets, including the bias-corrected (i.e.,
PRJ_OMPS + OMPS) and the untreated OMI TCO time series, and the
ground-based TCO measurements. An apparent increasing trend was
observed from the simply merged TCO time series between OMPS and
OMIwithout bias correction at 38 ground-based stations in the past de-
cade, with a speed of 0.136 DU/month, almost twice those from the
original OMI (0.081 DU/month), the bias-corrected OMI (0.086 DU/
month), and the ground-based measurements (0.068 DU/month). Sig-
nificant deviations between these estimated trends, especially toward
the one derived from the merged TCO record without bias correction,
showing a TCO increase rate twice that of the ground-based measure-
ments, strongly demonstrate the necessity of bias correction prior to
cross-mission data merging.

In addition to significant impacts onmagnitudes of estimated trends,
cross-mission biases can also result in different phases (i.e., opposite
signs) of trends, such as the one at BELSK station (WMO/GAW ID: 68)
(Table 2). An increasing trend (0.025 DU/month) was observed from
the merged TCO time series without bias correction, whereas it indi-
cates decreasing trends from the untreated OMI (−0.035 DU/month),
bias-corrected (−0.032 DU/month), and ground-based (−0.054 DU/
month) TCO time series. In contrast to changes in magnitudes to esti-
mated trends, changes in phases of estimated trends weremore serious
in trend analysis because opposite projections will be conducted. De-
spite some inconsistency observed between the estimated satellite-
based trends and that of ground-based measurements, the negligible
differences between derived trends from the bias-corrected time series
and untreated OMI time series clearly indicate that trends derived from
the bias-corrected time series were more accurate than those without
bias correction.

To further depict the impacts of cross-mission biases on trend anal-
ysis, seasonal TCO trends during 2004–2015 were estimated from the
merged TCO time series before (Fig. 16a) and after (Fig. 16b) bias cor-
rection. Note that Figure 16a or 16b is comprised of four subdiagrams
to form Panel a or b, respectively, side by side for the purpose of inter-
comparison. Apparent ozone recoverieswere observed globally through
each season by a rate of 1 DU/year, with themost prominent recoveries
observed mainly over North America in spring and over East Antarctica
in fall by a rate of 4 DU/year (Fig. 16a). In addition, most of the observed
ozone layer recoveries were significant at the 90% confidence interval.
These results strongly depict the signs of ozone layer recovery at the
global scale in the past decade.

Compared to apparent increasing trends derived from the merged
TCO time series without bias correction (Fig. 16a), increasing trends
weremuchweaker when derived from themerged time series between
bias-correctedOMI andOMPS TCOobservations. In addition,most of the
increasing trends were not statistically significant at the global scale.
Differences between seasonal trends derived from merged time series
before and after bias correction (Fig. 17), indicating that trends derived
from the merged time series without bias correction apparent
overestimated those from bias-corrected time series over most regions
throughout the year by an average of 0. 531 DU/year in spring
(March–April–May), 0.51 DU/year in summer (June–July–August),
0.447 DU/year in fall (September–October–November), and 0.408 DU/
year in winter (December–January–February), respectively. Significant
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overestimations were observed at mid-to-high latitudes in the NH and
slight underestimations over Antarctica. These differences strongly sug-
gest that the bias correction scheme is essential for preparing an accu-
rate long-term TCO record for trend analysis, even with data from
highly accurate TCO datasets, especially for the assessment of ozone re-
covery speed.

5. Conclusions

To achieve the goal of creating a long-term coherent TCO record for
trend analysis and climate modeling, a modified statistical bias correc-
tion method was proposed for removing apparent cross-mission biases
between OMPS and OMI TCO observations prior to the data-merging
scheme. The proposed bias-correction method is a modified version of
the Q-Q adjustment method, with essential modifications made to the
bias-estimation algorithms. Compared to the original, the modified
method is more adaptive and transferable and can be easily applied to
any similar applicationsPanel Panel . This adaptive characteristic results
from the improvements of bias estimation algorithms. In the modified
version, biases can be easily quantified for given observations from
two control observations through distribution mapping, without de-
pendence on the distribution of raw input observations. By contrast,
the original method requires the same length of samples in both raw
and control observations, a difficult requirement to satisfy, especially
for calibrating long-term satellite observations with limited overlaps.

In these types of statistical bias correction methods, adequate and
ample samples are required in control observation time series to guaran-
tee accurate bias estimation, especially for datasetswith time-dependent
biases, such as TCO observations, because biases are mainly determined
from these pair-wise control observations through distributionmapping.
Generally, the control observation time series should include observa-
tions sampled from a minimum of one complete time period (or one
cycle), such as 1-year TCO observations, to remove the seasonal depen-
dent cross-mission biases. Otherwise, biases might not be effectively re-
moved with limited samples in both control observations. In addition,
the consistency and quality of each sensor's observations are also critical
to the final result, especially for those sensors after years of operation be-
cause their quality might be affected due to degradations of sensors.
Within this context, accurate instrumental calibrations are indispensable.

Taking advantage of 3-year overlapped observations during 2012–
2015, the historical TCO observations from OMI during 2004–2012
were calibrated to the OMPS level at the global scale by using the mod-
ified statistical bias correction method. To evaluate the performances of
this bias correction method, one time series similarity index termed as
overall inconsistency was proposed in this study to quantify the consis-
tency between two time series. Compared to simple statistics, such as
the MRD and RMSE, the OI is more versatile and comprehensive in
quantifying similarities between time series because it can account for
deviations, variances, and correlations, simultaneously. Comparisons
of OIs before and after bias correction suggest that themodified bias cor-
rectionmethodworks effectively in removing observed apparent latitu-
dinal and seasonal dependent cross-mission TCO biases between OMPS
and OMI. The consistency was improved significantly after bias correc-
tion, with an overall improvement of 90% at the global scale. This prom-
inent improvement could be mainly ascribed to the application of
unique control observations at each geographic grid and the seasonal
behavior of cross-mission biases . Finally, with bias-corrected OMI TCO
observations, a long-term consistent TCO record was created by merg-
ing the bias-corrected OMI TCO observations with that of OMPS.

In addition to evaluating consistency improvements before and after
bias correction, impacts of cross-mission biases on trend estimations
were also investigated. Trends derived from time series without bias
correction significantly overestimated those from the bias-corrected
time series. Apparent increasing trends were observed from the simply
merged TCO time series between OMPS and OMI without bias correc-
tion at 38 ground-based stations during 2004–2015, almost twice
those from the original OMI, the bias-corrected time series, and the
ground-based measurements. In addition to significant impacts on
magnitudes of estimated trends, cross-mission biases also resulted in
different phases of trends. Further comparisons of estimated global sea-
sonal TCO trends before and after bias correction suggest that trends de-
rived from the bias corrected time series are more accurate than those
without bias correction. Overall, the bias correction scheme is essential
for preparing an accurate long-term TCO record for trend analyses, even
with data from highly accurate TCO datasets, especially for the assess-
ment of ozone recovery at the global scale.
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