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The rapid development of global industrialization and urbanization has resulted in a great deal of electric
power consumption (EPC), which is closely related to economic growth, carbon emissions, and the long-
term stability of global climate. This study attempts to detect spatiotemporal dynamics of global EPC
using the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime
stable light (NSL) data. The global NSL data from 1992 to 2013 were intercalibrated via a modified invari-
ant region (MIR) method. The global EPC at 1 km resolution was then modeled using the intercalibrated
NSL data to assess spatiotemporal dynamics of EPC from a global scale down to continental and national
scales. The results showed that the MIR method not only reduced the saturated lighted pixels, but also
improved the continuity and comparability of the NSL data. An accuracy assessment was undertaken
and confined that the intercalibrated NSL data were relatively suitable and accurate for estimating EPC
in the world. Spatiotemporal variations of EPC were mainly identified in Europe, North America, and
Asia. Special attention should be paid to China where the high grade and high-growth type of EPC covered
0.409% and 1.041% of the total country area during the study period, respectively. The results of this study
greatly enhance the understanding of spatiotemporal dynamics of global EPC at the multiple scales. They
will provide a scientific evidence base for tracking spatiotemporal dynamics of global EPC.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Electric power consumption (EPC) is indispensable to modern
society, playing an important role in supporting socioeconomic
development and human life [1–4]. As such, EPC is often one of
the main sources of carbon emissions which are the important
sources to drive and accelerate global warming [5–8]. After World
War II, the world has entered a rapid development stage of
industrialization and urbanization. Global EPC showed a massive
increase of about four fold from 4512 billion kW h in 1971 to 21,
725 billion kW h in 2012 [9]. This rapid growth is not only closely
related to the world energy market and global sustainable develop-
ment, but also affects the long-term stability of global climate.
Hence, accurately and reliably detecting spatiotemporal dynamics
of global EPC is crucial for understanding both the impacts and the
mechanisms of EPC and its interactions with socioeconomic
activities and the environment.

Previous studies have detected spatiotemporal dynamics of EPC
in several ways. For example, Ranjan and Jain [10] modeled

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2016.10.032&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2016.10.032
mailto:blyu@geo.ecnu.edu.cn
http://dx.doi.org/10.1016/j.apenergy.2016.10.032
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy
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spatiotemporal dynamics of EPC in Delhi using linear multiple
regression models. Tso and Yau [11] used regression analysis, deci-
sion tree and neural networks for the evaluation of EPC. Huang
et al. [12] used a Grey-Markov forecasting model to estimate the
electric power supply and demand in China from 1985 to 2001.
Wang et al. [13] analyzed the changes in industrial EPC in China
from 1998 to 2007, using a logarithmic mean Divisia index I
decomposition method. Bianco et al. [14] presented temporal EPC
in Italy from 1970 to 2007. Bildirici et al. [15] evaluated the causal-
ity relationship between EPC and economic growth for US, China,
Canada and Brazil. However, most of these investigations used sta-
tistical EPC data based on administrative units. In spite of their
authoritativeness, the statistical EPC data were both time lagging
and short of spatial details, which severely limited their usefulness
[5]. More importantly, compared with statistical EPC data, detec-
tion of spatiotemporal dynamics of EPC at finer scales is a more
realistic application. The results are easier to be integrated with
other spatial data layers, so as to carry out interdisciplinary studies
[5]. Consequently, more efficient ways of detecting spatiotemporal
dynamics of EPC at finer scales are urgently demanded.

Satellite remote sensing imagery, such as the nighttime light
data obtained by the Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP-OLS), is an effective proxy
for socioeconomic indicators [16–25]. Since nighttime lights can
directly reflect economic activity intensity which is closely related
to EPC [26–28], the DMSP-OLS data can be integrated with statisti-
cal EPC data to capture spatiotemporal dynamics of EPC in detail
over larger areas. Previous studies have demonstrated that
DMSP-OLS data have a great potential to model EPC. For example,
Elvidge et al. [27] firstly found that DMSP-OLS data were highly
correlated to statistical EPC data in 21 countries in the mid-
1990s. Amaral et al. [29] demonstrated a close correlation between
DMSP-OLS data and statistical EPC data in Brazilian Amazonia in
1999. Similarity, Lo [30] gave a logarithmic relationship between
DMSP-OLS data and statistical EPC data for 35 Chinese capital
cities. Townsend et al. [31] reported a high correlation between
DMSP-OLS data and statistical EPC data in Australia from 1997 to
2002. In addition, Chand et al. [32] analyzed spatial characteriza-
tion of EPC patterns over India using temporal DMSP-OLS data
from 1993 to 2002. He et al. [1] built logarithmic regression models
between DMSP-OLS data and statistical EPC data to model spa-
tiotemporal dynamics of EPC at county scale in China from 1995
to 2008. Cao et al. [5] proposed a top-down method to estimate
pixel-based EPC in China from 1994 to 2009 using DMSP-OLS data,
gross domestic product (GDP), and population as the variables. He
et al. [33] detected spatiotemporal dynamics of EPC at the sub-
county level in China from 2000 to 2008 using DMSP-OLS data.
Using DMSP-OLS data, Xie and Weng [34] modeled spatiotemporal
dynamics of EPC in urban cores and suburban regions at Chinese
cities from 2000 to 2012. Although previous studies have docu-
mented the effectiveness of DMSP-OLS data for estimating EPC
with varying degree of success, most of these studies focused on
national, regional, or city level evaluation. Due to lack of complete
statistical EPC data for all countries in the world, what is missing to
date is the detailed exploration of DMSP-OLS data for detecting
spatiotemporal dynamics of global EPC. It is, therefore, worthwhile
to introduce an effective approach for linking incomplete statistical
EPC data with DMSP-OLS data so that the spatiotemporal dynamics
of global EPC can be modeled accurately and reliably.

There are two other constraints which limit the reliability and
accuracy of modeling spatiotemporal dynamics of global EPC using
DMSP-OLS data. The first one is pixel saturation of DMSP-OLS data
in the urban center of large cities, and the other is the lack of con-
tinuity and comparability of the data [35]. Pixel saturation in
DMSP-OLS data results from the OLS sensor’s low radiometric res-
olution of six bits. The OLS sensor was designed to detect low-
radiance light sources with radiance ranging from 10�10 to
10�8 W/cm2/sr/lm under normal operation [36]. Light sources
with radiance ranging >10�8 W/cm2/sr/lm, which often exist in
the urban center, were all given the digital number (DN) value of
63 in DMSP-OLS data [33]. Consequently, the different radiance
of various lights in the center of urban could not be distinguished.
In addition, due to lack of in-flight calibration, discrepancies
appeared between DN values derived from different satellites for
the same year, and abnormal fluctuations appeared in DN values
for different years derived from the same satellite [37,38].

To improve the availability of DMSP-OLS data, many studies
have attempted to resolve these two constraints. Among these
studies, the invariant region method were widely used to intercal-
ibrate the DMSP-OLS data [39]. The essence of this method is to use
a small administrative unit as an invariant region to intercalibrate
DMSP-OLS data in the broader regions. For example, Elvidge et al.
[40] assumed Sicily, Italy as an invariant region to intercalibrate
DMSP-OLS data from 1994 to 2008. Similarly, using Jixi as an
invariant region, Liu et al. [37] applied second-order regression
models to intercalibrate DMSP-OLS data in China from 1992 to
2008. Although these studies solved the discontinuity problem in
DMSP-OLS data, they failed to reduce pixel saturation. In addition,
Letu et al. [41] presented an invariant region method within some
administrative units to remove the saturated pixels of DMSP-OLS
data of Japan. Although this study had advantages of correcting
the saturated pixels, it could hardly to optimize continuity and
comparability of DN values within DMSP-OLS data. Most recently,
Wu et al. [42] has defined Mauritius, Puerto Rico, and Okinawa as
the invariant regions to some extent reduce pixel saturation and
enhance continuity of DMSP-OLS data in the world. However, all
the saturation pixels were assigned to a fix value which means that
there is no spatial difference across the corrected saturation pixels
for each year. In regard to the invariant region method, research
questions remain regarding how to not only effectively reduce sat-
uration pixels but also accurately solve the discontinuity problem
in DMSP-OLS data.

To address the above deficiencies, this study attempts to detect
spatiotemporal dynamics of global EPC using DMSP-OLS data from
1992 to 2013. The objectives are (1) using a modified invariant
region (MIR) method for intercalibrating DMSP-OLS data; (2) link-
ing incomplete statistical EPC data with the intercalibrated DMSP-
OLS data for constructing global EPC at 1 km resolution; and (3)
evaluating spatiotemporal dynamics of EPC from a global scale
down to continental and national scales.

This study is organized as follows. Section 2 briefly describes
data sources. Section 3 introduces methodology, presenting the
methods for intercalibrating DMSP-OLS data, estimating EPC, and
evaluating spatiotemporal dynamics of EPC. Section 4 presents
the results and discussion, and conclusions are drawn in Section 5.
2. Data sources

The DMSP-OLS data from 1992 to 2013 were obtained from the
National Oceanic and Atmospheric Administration’s National
Geophysical Data Center (NOAA/NGDC). These data include
different types of products. The nighttime stable light (NSL) data
include lights from country-sides, towns, cities and other sites with
persistent lighting and discard ephemeral events such as fires. The
DN values of NSL data range from 0 to 63. Data cover an area of
�180 to 180 degrees in longitude and �65 to 75 degrees in
latitude, at a spatial resolution of 30-arc-second (about 1 km).
Therefore, the NSL product was considered as suitable data to
detect spatiotemporal dynamics of global EPC in this study.
Currently, the NSL data originate from six satellites: F10 (1992–
1994), F12 (1994–1999), F14 (1997–2003), F15 (2000–2007), F16



Table 1
Description of the data used in this study.

Data Data description Year Source

NSL Annual nighttime stable light composite data 1992–2013 NOAA/NGDC (http://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html)
RCNL Global radiance calibrated nighttime light

composite data
2006 NOAA/NGDC (http://www.ngdc.noaa.gov/eog/dmsp/download_radcal.html)

Landsat-4/5 TM Nine images covering five cities: Beijing,
Shanghai, Tokyo, Melbourne, and New York

2010 USGS (http://earthexplorer.usgs.gov/)

EPC Annual statistical data of EPC (104 kW h) 1992–2012 World Bank Open Database (http://data.worldbank.org/)
Boundaries Shapefile of global continents and countries 2013 ESRI Baruch Geoportal (http://www.baruch.cuny.edu/geoportal/)
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(2004–2009) and F18 (2010–2013). These satellites have provided
a total of 34 annual products over 22 years.

The global radiance calibrated nighttime light (RCNL) data for
2006 downloaded from NOAA/NGDC were used to facilitate pixel
saturation correction of the NSL data. Compared with the NSL data,
the RCNL data do not exist saturated pixels in the center of urban
areas and have a wide range of DN values. Nine scenes of Landsat-
4/5 Thematic Mapper (TM) images were obtained from United
States Geological Survey (USGS) to evaluate the saturation correc-
tion results of the NSL data. In addition, the statistical EPC data for
132 countries around the world were collected from the World
Bank Open Database. The global boundary data for continents
and countries were extracted from ESRI Baruch Geoportal. A sum-
mary of data used in this study is given in Table 1.
3. Methodology

Three main procedures were undertaken to detect spatiotempo-
ral dynamics of global EPC using the NSL data: firstly, intercalibrat-
ing the NSL data using the MIR method; secondly, estimating EPC
using the intercalibrated NSL data; and thirdly, evaluating spa-
tiotemporal dynamics of EPC from 1992 to 2013 (Fig. 1).

3.1. Intercalibration of the NSL data

Following the invariant region method proposed by Elvidge
et al. [40], Wu et al. [42], and Liu et al. [37]. The global NSL data
from 1992 to 2013 were intercalibrated via the MIR method. This
method involved two aspects: (1) reduction of saturation effect;
(2) Correction of discontinuity effect.

3.1.1. Reduction of saturation effect
As saturated lighted pixels in the NSL data severely limit relia-

bility and accuracy of EPC estimation, we first reduced the satu-
rated lighted pixels within the NSL data through four steps.

Firstly, according to the work of Meng et al. [39], we selected
Japan as an invariant region. Because Japan experienced a rela-
tively stable socioeconomic development and had a wide spread
of DN values within the NSL data, these characteristics could
improve the accuracy of intercalibration.

Secondly, the 2006 RCNL data were chosen as the reference
image [42]; we extracted the data of Japan from the NSL data
and 2006 RCNL data, respectively.

Thirdly, power regression models (Eq. (1)) were developed
between the NSL data and 2006 RCNL data of Japan.

DNori
Jap ¼ a� DNb

Jap ð1Þ

where DNori
Jap is the DN value of the original NSL data of Japan, DNJap

is the DN value of Japan from 2006 RCNL data, a and b are coeffi-
cients. The coefficients of these power regression models are listed
in Table 2.

Finally, we assumed that the relationship between the NSL data
and 2006 RCNL data of the world was similar to that in Japan. The
global NSL data were intercalibrated using the following power
regression models.

DNcor
Glo ¼

DN
a

� �1
b

ð2Þ

where DNcor
Glo is the saturation-corrected DN value of the global NSL

data, DN is the original DN value of the global NSL data.
3.1.2. Correction of discontinuity effect
The process of reduction of saturation effect solved the problem

of pixel saturation, but the inconsistencies in lighted pixels
remained unresolved because the NSL data were composed of mul-
tiyear and multisatellite data [43]. Referring to the work of Liu
et al. [37], we corrected the discontinuity and incomparability of
the global NSL data through two steps.

Firstly, to make full use of information derived from two satel-
lites for the same year, we obtained an intra-annual composition of
the NSL data using Eq. (3).

DNintra
ðn;iÞ ¼

0 DNd
ðn;iÞ ¼ 0 or DNe

ðn;iÞ ¼ 0

ðDNd
ðn;iÞ þ DNe

ðn;iÞÞ=2 otherwise

(
ð3Þ

where DNintra
ðn;iÞ is the DN value of the ith lighted pixel after the intra-

annual composition in the nth year; DNd
ðn;iÞ and DNe

ðn;iÞ are DN values
of the ith lighted pixel from two saturation-corrected NSL data in
the nth year. n is the number of years from 1994 to 2007.

Secondly, since the world is undergoing rapid economic devel-
opment, EPC growth, and urban expansion, we generated an
assumption that the DN value of a lighted pixel detected in an early
year would not be less than the DN value of a lighted pixel in a later
year [35,44]. We also pointed out that since economic recessions,
warfare, and disasters could result in population decline and eco-
nomic regression in some countries, such as Iraq, Afghanistan,
and Libya, these uncertainties were very likely to lead to a decrease
in brightness of nighttime lights. However, because the nighttime
lights in these countries were only a small proportion of the total
nighttime lights in the world, we believed this assumption to be
workable. Hence, we performed an inter-annual correction by the
following equation.

DNinter
ðn;iÞ ¼

0 DNh
ðnþ1;iÞ ¼ 0

DN f
ðn�1;iÞ DNh

ðnþ1;iÞ > 0 and DN f
ðn�1;iÞ > DNg

ðn;iÞ
DNg

ðn;iÞ otherwise

8>><
>>: ð4Þ

where DNinter
ðn;iÞ is the DN value of the ith lighted pixel after the inter-

annual correction in the nth year; DN f
ðn�1;iÞ, DN

g
ðn;iÞ and DNh

ðnþ1;iÞ are

DN values of the ith lighted pixel from intra-annual composition
NSL data in the n � 1th, nth, and n + 1th years. n represent the num-
ber of years from 1992 to 2013. Implementing the method as
described above, we obtained the intercalibrated NSL data from
1992 to 2013 (Fig. 2).

http://www.ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://www.ngdc.noaa.gov/eog/dmsp/download_radcal.html
http://earthexplorer.usgs.gov/
http://data.worldbank.org/
http://www.baruch.cuny.edu/geoportal/


Table 2
Coefficients of the power regression models for saturation correction.

Satellite Year a b Satellite Year a b

F10 1992 4.665 0.474 F15 2001 5.088 0.464
F10 1993 3.929 0.500 F15 2002 4.865 0.475
F10 1994 4.206 0.493 F15 2003 3.038 0.542
F12 1994 5.111 0.463 F15 2004 3.117 0.543
F12 1995 4.993 0.470 F15 2005 3.539 0.522
F12 1996 5.002 0.470 F15 2006 3.477 0.527
F12 1997 5.148 0.466 F15 2007 3.402 0.530
F12 1998 5.537 0.457 F16 2004 4.297 0.494
F12 1999 6.118 0.439 F16 2005 3.725 0.517
F14 1997 3.958 0.506 F16 2006 3.907 0.509
F14 1998 4.133 0.500 F16 2007 4.567 0.488
F14 1999 4.031 0.505 F16 2008 4.424 0.492
F14 2000 4.131 0.500 F16 2009 4.621 0.480
F14 2001 4.704 0.481 F18 2010 6.497 0.430
F14 2002 4.293 0.496 F18 2011 4.985 0.469
F14 2003 4.113 0.503 F18 2012 5.400 0.461
F15 2000 5.147 0.465 F18 2013 5.400 0.462
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Fig. 1. Flowchart of methodology.
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Fig. 2. The intercalibrated NSL data of the world from 1992 to 2013.
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3.2. EPC estimation

The estimation of EPC at 1 km resolution using the intercali-
brated NSL data was based on a hypothesis that a more developed
area generally has brighter lights and higher EPC. In other words,
the DN value of a lighted pixel is positively correlated to EPC from
the pixel location on the ground. Due to lack of the detailed EPC at
the pixel level, we further assumed that the positive correlation
between the DN values and statistical EPC was constant within a
specific region. Three steps were conducted to accurately estimate
global EPC in this study.

Firstly, with the consideration of the regional similarity in geo-
graphical location and socioeconomic status, we subdivided the
world (264 countries or districts) into 48 regions (Fig. 3).

Secondly, we performed the linear regression model to quantify
the correlation between the statistical EPC and intercalibrated NSL
data from 1992 to 2012 at the regional scale (Eq. (5)), because the
linear regression model was simple with relatively high accuracy,
and has been widely applied to EPC estimation [17,33,45,46]. It
should be noted that the existing EPC statistics were used to sub-
stitute for no data countries in some regions, such as African 7, Asia
12, and South America 1 (Fig. 3).

SEr ¼ cTDNr ð5Þ
where SEr is statistical EPC in rth region, TDNr is the total DN value
of all the lighted pixels in the intercalibrated NSL data in rth region,
and c is coefficient. The coefficients for specific regions are listed in
Table 3.

Finally, we used the following Equation to model global EPC
with a pixel size of 1 km from 1992 to 2013.

Eir ¼ cCDNir ð6Þ
where Eir is estimated EPC of the lighted pixel i in r region, CDNir is
the DN value of the lighted pixel i in r region in the intercalibrated
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Fig. 3. The classified regions in the world.

Table 3
Coefficients of the linear regression model for EPC estimation.

Region c Region c

North America 1 3.327 Africa 2 5.635
North America 2 3.968 Africa 3 2.361
North America 3 1.599 Africa 4 3.463
North America 4 2.639 Africa 5 0.626
North America 5 2.693 Africa 6 1.547
South America 1 2.617 Africa 7 0.568
South America 2 2.342 Africa 8 2.527
South America 3 1.802 Africa 9 2.789
South America 4 4.717 Africa 10 1.696
South America 5 3.195 Asia 1 1.082
South America 6 2.323 Asia 2 2.619
Europe 1 4.296 Asia 3 2.243
Europe 2 4.804 Asia 4 2.317
Europe 3 7.008 Asia 5 3.317
Europe 4 3.706 Asia 6 2.453
Europe 5 6.618 Asia 7 5.163
Europe 6 3.746 Asia 8 10.415
Europe 7 5.163 Asia 9 5.203
Europe 8 3.250 Asia 10 8.709
Europe 9 5.104 Asia 11 5.659
Europe 10 3.294 Asia 12 5.436
Europe 11 3.236 Asia 13 5.116
Europe 12 5.155 Oceania 1 6.907
Africa 1 6.187 Oceania 2 6.450
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NSL data, and c is coefficient determined by regression analysis
from Eq. (5). On the basis of the linear regression model and the
pixel-based EPC estimation (Eq. (6)), we modeled the annual EPC
images in the world from 1992 to 2013 (Fig. 4).

3.3. Evaluation of spatiotemporal dynamics of global EPC

To evaluate the spatial pattern of global EPC, the average EPC
from 1992 to 2013 was first calculated with the following
Equation:

�Ei ¼
P2013

n¼1992Ei

t
ð7Þ

where �Ei is average EPC in pixel i from 1992 to 2013, and t is set to
22 to represent the total number of years.
Then, the Natural Break method [16,47,48] was applied to clas-
sify the spatial EPC map. This map was classified into five grades:
low (<104 � 104 kW h), relatively-low (104–365 � 104 kW h), med-
ium (364–741 � 104 kW h), relatively-high (741–1399 � 104 kW h)
and high (>1399 � 104 kW h). Note that there were many ways to
classify EPC, the Natural Break method was chosen as the purpose
here was to investigate statistical variations in different areas, and
it provided the smallest variances between categories, without the
influence of artificial factors [47,48].

Eq. (8) was then used to describe the temporal variation of
global EPC between 1992 and 2013. Again using the Natural
Break method, the temporal variation was also classified into
five types: no-obvious-growth (<105 � 104 kW h), low-growth
(105–325 � 104 kW h), moderate-growth (325–699 � 104 kW h),
relatively-high-growth (699–1322 � 104 kW h), and high-growth
(>1322 � 104 kW h).

Etem
i ¼ E2013

i � E1992
i ð8Þ

where Etem
i is temporal EPC in pixel i between 1992 and 2013.
4. Results and discussion

4.1. Evaluation of NSL data intercalibration

To clearly show the saturation-corrected results of the NSL data,
a visual comparison with the finer resolution Landsat-4/5 TM
images between the intercalibrated NSL data and original NSL data
in year 2010 was undertaken for five metropolises which repre-
sented the most developed areas in the world (Fig. 5). Since Wu
et al.’s [9] intercalibrated NSL data (Wu’s NSL data for short) reduce
pixel saturation and enhance DN value continuity of the NSL data
to some extent, a comparison with these data was also performing
in this study. It has been shown that the presence of saturated
lighted pixels constrained the original NSL data to effectively rep-
resent urban areas (panel (b) and panel (c)). Although Wu’s NSL
data relatively improved the ND values in urban centers, the satu-
rated lighted pixels still existed, which also made it difficult to
identify urban land use types from nighttime light data (panel
(d) and panel (e)). In other words, the saturated lighted pixels in
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Fig. 4. The estimated EPC in the world from 1992 to 2013 based on the intercalibrated NSL data. Note: the intercalibrated NSL data were resampled to the pixel size of 1 km
on Mollweide projection to facilitate calculation.

1 For interpretation of color in Fig. 6, the reader is referred to the web version of
is article.
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some metropolises were larger than the actual urban land surface.
The intercalibrated NSL data by this study can bring an urban pat-
tern which was much closer to the Landsat-4/5 TM images. The
newly intercalibrated data show a clearer distinguish in the transi-
tion between urban and suburb areas and improved the differential
with urban areas (panel (f)). The saturated lighted pixels have been
significantly reduced in urban centers in the NSL data intercali-
brated by this study (panel (g)). In summary, the proposed method
can effectively reduce the saturated lighted pixels and improve the
ability of the NSL data to represent the true human nighttime
lights, in particular in the urban areas.

Fig. 6 shows the sums of original and intercalibrated DN values.
For the original NSL data, the sum of DN values presents a large gap
between two satellites from the same year, while the data derived
from the same satellite shows a strong random volatility in inter-
annual variability (Fig. 6(a)). Fig. 6(b) illustrates that the sum of
DN values of Wu’s NSL data presents a relatively stable growth
trend. The gap between data for the same year from different satel-
lites has been narrowed, and the abnormal fluctuations of sum of
DN values from same satellite in different years have been reduced.
However, the discontinuity of Wu’s NSL data do not completely
disappear. For example, the sum of DN values were 193,496,368
in 1996 from satellite F12 and 185,430,459 in 1997 from satellite
F12 (the red1 block in Fig. 6(b)). Since global EPC has increased
rapidly during the last 20 years, nighttime lights have generally
increased and such discontinuity seems irrational. Comparing the
results with those of original NSL data and Wu’s NSL data, the NSL
data intercalibrated by this study not only reduced the abnormal
th
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fluctuations in the sum of DN values for the same satellite over dif-
ferent years, but also removed the discrepancies in the sum of DN
values collected from a different satellite for the same year, indicat-
ing that our approach helped to produce more consistent annual val-
ues which would facilitate the analysis and to draw more reliable
results (Fig. 6(c)).

4.2. Accuracy assessment of EPC estimation

The accuracy of global EPC estimation was assessed using
country-level statistical EPC. We collected 128 countries’ EPC from
1992 to 2012 to calculate EPC for each country from annual EPC
images. These countries cover all the developed countries, such
as America, Japan, France, and Australia, and most developing
countries, such as China, India, Brazil and Mexico. Two indicators
were used to evaluate the accuracies of the spatial distributions
of global EPC – the coefficient of determination (R2) and relative
error (RE). Table 4 and Fig. 7 show that all the R2 values were equal
to or >0.990 with an average R2 value of 0.996 for the intercali-
brated NSL data, and all the RE values were between �17.663%
and 2.635%.

To further evaluate the efficiency of using the intercalibrated
NSL to estimate EPC, the original NSL data and Wu’s NSL data were
also used to estimate EPC in the world, using the same method
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Table 4
Accuracy assessment of the estimated EPC based on the intercalibrated NSL data, original NSL data, and Wu’s NSL data.

Year Statistical EPC
(108 kW h)

Intercalibrated NSL data Original NSL data Wu’s NSL data

Estimated EPC
(108 kW h)

RE (%) R2 Estimated EPC
(108 kW h)

RE (%) R2 Estimated EPC
(108 kW h)

RE (%) R2

1992 110,413 90,911 �17.663 0.990 114,024 3.271 0.988 93,158 �15.627 0.993
1993 112,376 109,565 �2.502 0.994 120,094 6.867 0.989 95,161 �15.319 0.994
1994 115,219 114,818 �0.348 0.996 122,945 6.705 0.989 112,353 �2.488 0.995
1995 118,908 121,774 2.410 0.997 141,036 18.609 0.987 119,866 0.806 0.997
1996 122,743 125,089 1.912 0.998 139,041 13.277 0.991 127,498 3.874 0.996
1997 125,705 127,942 1.779 0.998 129,048 2.659 0.988 126,490 0.624 0.994
1998 128,498 130,825 1.812 0.997 138,547 7.821 0.982 139,944 8.907 0.994
1999 132,035 134,297 1.713 0.997 139,114 5.361 0.991 143,575 8.740 0.996
2000 137,975 138,122 0.106 0.998 147,801 7.121 0.992 137,857 �0.086 0.995
2001 139,262 140,242 0.703 0.999 144,729 3.925 0.991 136,365 �2.080 0.995
2002 144,175 144,640 0.322 0.998 146,896 1.887 0.990 135,231 �6.204 0.994
2003 149,647 149,425 �0.148 0.998 128,887 �13.872 0.995 141,384 �5.522 0.999
2004 156,412 153,845 �1.641 0.998 135,669 �13.262 0.992 145,218 �7.158 0.996
2005 163,254 155,931 �4.485 0.999 131,788 �19.274 0.997 150,761 �7.653 0.998
2006 169,926 160,274 �5.679 0.999 137,055 �19.344 0.998 159,119 �6.360 0.998
2007 177,936 163,612 �8.050 0.997 148,704 �16.428 0.997 170,421 �4.224 0.995
2008 181,739 167,127 �8.039 0.997 161,450 �11.160 0.997 181,268 �0.260 0.994
2009 180,826 173,561 �4.017 0.993 153,779 �14.957 0.987 183,379 1.412 0.982
2010 193,341 190,282 �1.582 0.994 227,456 17.645 0.991 199,640 3.258 0.983
2011 199,749 201,924 1.089 0.992 189,592 �5.084 0.987 – – –
2012 204,230 209,612 2.635 0.990 199,638 �2.248 0.984 – – –
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described in Section 3.2. The mean R2 values increased from 0.991,
0.994 to 0.996, whereas the average of absolute RE values
decreased from 10.037%, 5.295% to 3.268% after performing the
intercalibration for the NSL data in the world (Table 4). Therefore,
the intercalibrated NSL data are more suitable for estimating EPC
than the original NSL data and Wu’s NSL data.

From Table 4, we noticed that the RE values of the intercali-
brated NSL data were significantly swung from 1992 to 2012. For
example, the RE values were negative from 1992 to 1994. This
might be attributed to the corrected errors which resulted in a rel-
atively small sum of DN values in these years. Contrarily, the RE
values were positive from 1996 to 2002 which could be attributed
to the world’s businesses being more and more active in this per-
iod, giving it a relatively high nighttime lights. However secondary
industries (including manufacturing industry, mining industry, and
construction industry) in many countries, especially in the devel-
oping countries, was not well developed. As a result, EPC was rel-
atively over-estimated when the intercalibrated NSL data were
used as a proxy. In addition, the estimated EPC was generally less
than the statistical EPC from 2003 to 2010. During this period,
some developing countries, such as China and India, experienced
accelerated industrialization and urbanization and consumed con-
siderable amounts of EPC. But these industries and their EPC were
hard to detect by nighttime satellite images at nighttime. Addition-
ally, compared with the other years, the sum of DN values from
2011 to 2012 presented rapid growth in the intercalibrated NSL
data (Fig. 6(b)), which could lead to a relatively high EPC
estimation.

Eight typical countries (United States, Japan, Australia, China,
India, Brazil, Bolivia, Mauritius, and Libya) were further used to
analyze the accuracy of EPC estimation. In these countries, United
States, Japan, and Australia represent the most developed coun-
tries; China, India, and Brazil are the rapidly developing countries;
Bolivia, Mauritius, and Libya represent less developed countries.
Fig. 8 showed that the RE values were relatively low for United
States, Japan, and Australia, with a mean of �0.271%, 1.658% and
�0.925%, respectively. The primary industries in these countries
were finance, commerce, fashion, technology, and culture which
were the major sources of EPC, producing bright lights at night.
Hence, the use of the intercalibrated NSL data to estimate EPC
could result in reliable estimation. Similarly, China, India, and Bra-
zil also possessed accurate EPC estimation (Fig. 8). Chemical indus-
try, manufacturing industry and construction industry were the
primary industries in these countries and consumed a large
amount of electricity which were hardly monitored by nighttime
light images. However, these countries hold a large number of
urban population which could give them a relatively higher night-
time lights. To a certain extent, the population lights supplemented
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the missing lights produced by heavy industries, leading to an
accurate estimation. In countries such as Bolivia, Mauritius, and
Libya where agriculture is an important industry, EPC was not very
high at daytime and nighttime due to the lack of development. But
these underdeveloped countries have a relatively high population
density in the urban areas, giving them high nighttime lights. Con-
sequently, the EPC was greatly over-estimated in these countries.
In summary, because the global EPC was mainly contributed from
the developed countries and rapid developing countries, we
believe that the intercalibrated NSL data provided a great potential
to detect spatiotemporal dynamics of global EPC.

4.3. Spatiotemporal dynamics of EPC from 1992 to 2013

The spatiotemporal dynamics of global EPC from 1992 to 2013
were modeled using the method described in Section 3.3 and
results mapped in Fig. 9. During these decades, the spatial varia-
tions of global EPC were concentrated in North America, Western
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Europe, East Asia, and South Asia which have developed socioeco-
nomic conditions or large populations. Contrarily, South America,
Africa, and Oceania experienced slight spatial variations of EPC
because they had low socioeconomic conditions or relatively small
population. To clearly understand the global EPC, we evaluated the
spatiotemporal dynamics from a global scale down to continental
and national scales.

4.3.1. Spatiotemporal dynamics of EPC at global scale
Fig. 10(a) and (d) plot the five grades and five types of global

EPC from 1992 to 2013. Of the total area of the world, the low
and relatively-low grades made up 19.060% and 1.210%, respec-
tively. The medium, relatively-high and high grades were mainly
distributed in 0.529%, 0.331% and 0.068% of the total area of the
world, respectively (Fig. 10(a)). Similarly, the temporal variations
of EPC were also mainly located in the metropolitan areas which
hold a large population and have undergone rapid urbanization
and industrialization. The growth of EPC was concentrated in
9.695% of the total area of the world, with no-obvious-growth,
low-growth, moderate-growth, relatively-high-growth, and high-
growth accounting for 7.727%, 1.292%, 0.458%, 0.140% and 0.078%
of the total area, respectively (Fig. 10(d)).

4.3.2. Spatiotemporal dynamics of EPC at continental scale
Although the world’s EPC increased continuously from 1992 to

2013, the differences in amounts and growth rates were huge for
the six continents (Fig. 10(b) and (e)). In terms of percentage of
total areas, the low, relatively-low and medium grades were
54.300%, 4.739% and 1.897% in Europe, respectively. The
relatively-high grade of EPC was 0.980% in Europe and 0.865% in
North America. The high grade of EPC was concentrated in Asia,
covering 0.165% of its total area (Fig. 10(b)). In addition, the no-
obvious-growth type was 25.89% of its total area in Europe
whereas this type was much lower in Oceania, Africa, and South
America with 1.09%, 1.59%, and 3.21% of their areas, respectively.
The growth of EPC was 5.54% in Europe and 1.87% in North America
showed a low-growth type, and 0.23% in Asia presented high-
growth (Fig. 10(e)). In summary, the spatiotemporal variations of
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EPC were mainly identified in Europe, North America, and Asia,
with no-obvious variations of EPC found in South America, Africa,
and Oceania.

4.3.3. Spatiotemporal dynamics of EPC at national scale
Three countries (United States, China, and India) were selected

in this study to clearly evaluate spatiotemporal dynamics of EPC at
a national scale. These countries are the largest developed and
developing countries in the world, and their economic growth
and EPC have greatly impacted global socio-economic changes.
Fig. 10(c) and (f) contained the areal percentage of each grade
and type in the three countries. The low grade was concentrated
in the India and accounted for 66.445% of its total area. Of the total
area of United States, the relatively-low, medium and relatively-
high grades made up 3.502%, 1.838%, and 1.992%, respectively. It
should be pointed out that the high grade was mainly located in
China, covering 0.409% of its total area (Fig. 10(c)). In addition,
India was dominated by no-obvious-growth type (>30%). Again,
the low-growth type was concentrated in America, accounting
for 3.654% of its total area. Special attention should be paid to
China where the moderate-growth, relatively-high-growth and
high-growth covered 1.032%, 1.022% and 1.041% of its total area,
respectively (Fig. 10(f)). In summary, the spatiotemporal variations
of EPC were mainly identified in China, with no-obvious variations
of EPC found in United States and India.

4.4. Limitations and future directions

This study still has a few limitations. For example, the assump-
tion of continuous DN growth could result in overestimations in
some countries which have experienced population decline or eco-
nomic recessions. Improving the reliability of global statistical EPC
data would surely increase the accuracy of the method proposed in
this study. Future research will focus on the improvement of inter-
calibrated method to increase EPC estimation accuracy. We will
also explore spatiotemporal dynamics of global electric power con-
sumption at the different scales (including county scale, provincial
scale, and national scale) and their driving forces which are closely
linked to global energy consumption and carbon dioxide emission.
In addition, with the release of the first global Suomi National Polar-
orbiting Partnership (NPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) nighttime light composite data at 0.5 km resolution,
further improvement on spatiotemporal dynamics of EPC becomes
possible.
5. Conclusions

In response to the rapid EPC increase in the world, this study
attempted to detect spatiotemporal dynamics of global EPC using
the NSL data from 1992 to 2013. The MIR method was proposed
to intercalibrate the global NSL data. The advantages of this
method are that it is simply dependent on the power regression
models between the NSL data and 2006 RCNL data, and it not only
reduces the saturated lighted pixels, but also improves the conti-
nuity and comparability of the NSL data in the world from 1992
to 2013. The global EPC at 1 km resolution was modeled using
the intercalibrated NSL data. The accuracy assessment demon-
strated that the intercalibrated NSL data were relatively suitable
and accurate for estimating EPC in the world. The spatiotemporal
dynamics of EPC were evaluated from a global scale down to con-
tinental and national scales. The model outputs clearly presented
the large variations of EPC among different regions. The spatiotem-
poral variations of EPC were mainly identified in Europe, North
America, Asia, and China, with no-obvious variations of EPC in
South America, Africa, Oceania, United States, and India.
We consider the proposed intercalibration method to be worth-
while because it improved the reliability of global EPC estimation.
Our EPC estimation in the world is valuable because they not only
provide global EPC at 1 km resolution, where EPC information has
often been difficult to obtain, but also enhance the human activity
data content which is an indispensable part of the big data era. In
addition, the simulated spatiotemporal dynamics will improve the
understanding of regional discrepancies of EPC at the multiple
scales, and provide a scientific basis for the effective and sustain-
able utilization of EPC in the world.
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